翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

mapping torus : ウィキペディア英語版
mapping torus
In mathematics, the mapping torus in topology of a homeomorphism ''f'' of some topological space ''X'' to itself is a particular geometric construction with ''f''. Take the cartesian product of ''X'' with a closed interval ''I'', and glue the boundary components together by the static homeomorphism:
:M_f =\frac
The result is a fiber bundle whose base is a circle and whose fiber is the original space ''X''.
If ''X'' is a manifold, ''Mf'' will be a manifold of dimension one higher, and it is said to "fiber over the circle".
Mapping tori of surface homeomorphisms play a key role in the theory of 3-manifolds and have been intensely studied. If ''S'' is a closed surface of genus ''g'' ≥ 2 and if ''f'' is a self-homeomorphism of ''S'', the mapping torus ''Mf'' is a closed 3-manifold that fibers over the circle with fiber ''S''. A deep result of Thurston states that in this case the 3-manifold ''Mf'' is hyperbolic if and only if ''f'' is a pseudo-Anosov homeomorphism of ''S''.〔W. Thurston, ''On the geometry and dynamics of diffeomorphisms of surfaces'', Bulletin of the American Mathematical Society, vol. 19 (1988), pp. 417–431〕
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「mapping torus」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.